Face Modeling by Information Maximization
نویسندگان
چکیده
A number of current face recognition algorithms use face representations found by unsupervised statistical methods. Typically these methods find a set of basis images and represent faces as a linear combination of those images. Principal component analysis (PCA) is a popular example of such methods. The basis images found by PCA depend only on pair-wise relationships between pixels in the image database. In a task such as face recognition, in which important information may be contained in the high-order relationships among pixels, it seems reasonable to expect that better basis images may be found by methods sensitive to these high order statistics. Independent component analysis (ICA), a generalization of PCA, is one such method. We used a version of ICA derived from the principle of maximum information transfer through sigmoidal neurons [12]. ICA was performed on face images in the FERET database under two different architectures, one which treated the images as random variables and the pixels as outcomes, and a second which treated the pixels as random variables and the images as outcomes. The first architecture found spatially local basis images for the faces. The second architecture produced a factorial face code. Both ICA representations were superior to representations based on principal component analysis for recognizing faces across days and changes in expression. A computational neuroscience perspective on face modeling and information maximization is discussed.
منابع مشابه
Information maximization in face processing
This perspective paper explores principles of unsupervised learning and how they relate to face recognition. Dependency coding and information maximization appear to be central principles in neural coding early in the visual system. These principles may be relevant to how we think about higher visual processes such as face recognition as well. The paper first reviews examples of dependency lear...
متن کاملMultimodal Belief Fusion for Face and Ear Biometrics
This paper proposes a multimodal biometric system through Gaussian Mixture Model (GMM) for face and ear biometrics with belief fusion of the estimated scores characterized by Gabor responses and the proposed fusion is accomplished by Dempster-Shafer (DS) decision theory. Face and ear images are convolved with Gabor wavelet filters to extracts spatially enhanced Gabor facial features and Gabor e...
متن کاملModeling the Other Race Effect with ICA
Principal component analysis (PCA) learns the second-order dependencies between image pixels, and performs information maximization when the input is Gaussian. Although PCA has been used for image analysis, images are not inherently Gaussian. Independent component analysis (ICA) learns higher order dependencies among image pixels and performs information maximization for many distributions. An ...
متن کاملST-GAN: Unsupervised Facial Image Semantic Transformation Using Generative Adversarial Networks
Image semantic transformation aims to convert one image into another image with different semantic features (e.g., face pose, hairstyle). The previous methods, which learn the mapping function from one image domain to the other, require supervised information directly or indirectly. In this paper, we propose an unsupervised image semantic transformation method called semantic transformation gen...
متن کاملOptimizing Language Model Information Retrieval System with Expectation Maximization Algorithm
Statistical language modeling (SLM) has been used in many different domains for decades and has also been applied to information retrieval (IR) recently. Documents retrieved using this approach are ranked according their probability of generating the given query. In this paper, we present a novel approach that employs the generalized Expectation Maximization (EM) algorithm to improve language m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002